

Astronomy Special Seminar

Dr. Samik Mitra
IIT Guwahati

Standing GRMHD shocks in accretion flows around rotating black holes

Time: 15:15-16:15, 17 December (Tuesday), Shanghai time

Venue: N600 (TDLI)

Host: Yosuke Mizuno

Join Tencent Meeting: <https://meeting.tencent.com/dm/YpO6opkhggv9>

Meeting ID: 377836220

Abstract:

One of the most efficient energy sources in the universe is the matter accretion onto compact objects, such as black holes (BHs) and neutron stars (NSs). Since magnetic fields are ubiquitous everywhere, the accretion flow is expected to be magnetized in nature, where the large-scale magnetic fields inside the disks are commonly rooted either from the companion star or the interstellar medium. Being motivated by this, we investigate the structure of low angular momentum magnetohydrodynamic (MHD) accretion flows around a Kerr BH using a general relativistic (GR) framework. To begin with, we adopt a steady, axisymmetric, advective accretion disk, which is threaded by the radial (b^r) and toroidal (b^ϕ) components of magnetic fields. These magnetic field lines are frozen in the accreting plasmas following the ideal GRMHD approximation. In addition, we adopt the relativistic equation of state (variable adiabatic index Γ) and obtain the family of trans-fast-magnetosonic accretion solutions. In a magnetized flow, the inflowing matter experiences centrifugal repulsion and an additional barrier due to the magnetic pressure that eventually causes a discontinuous shock transition of the flow variables following the necessary jump conditions. With this, we examine the shock dynamics with the variation of radial magnetic flux (Φ) and the iso-rotation parameter (F). It is worth mentioning that the toroidal magnetic field jumps significantly across the shock front, resulting in a highly magnetized PSC. We further identify the effective region of the parameter space for standing fast-MHD shocks and observe that shock forms for a wide range of flow parameters, namely energy (\mathcal{E}), angular momentum (\mathcal{L}), and radial magnetic flux (Φ), respectively. Meanwhile, we observe that the shocked GRMHD flow fails to achieve the Magnetically Arrested Disk (MAD) state in the midplane, yet it sustains a 'SANE' (Standard And Normal Evolution) flux. It is intriguing that the present steady state formalism could be useful to provide background seed solutions to perform GRMHD simulations in higher dimensions. Finally, we comment on the possible SEDs from the GRMHD flows.

李政道研究所
TSUNG-DAO LEE INSTITUTE

Biography:

Samik Mitra is a PhD student in theoretical Astrophysics, specializing in black hole accretion physics, with a particular emphasis on general relativistic magnetohydrodynamics (GRMHD). He earned his Bachelor's degree in Physics from the University of Calcutta (India) in 2016, followed by a Master's in Physics and Astrophysics at the University of Delhi (India) in 2018. After his M.Sc., Samik joined IIT Guwahati (India) to pursue his PhD in the Gravitation, Astrophysics, and Cosmology (GrAC) group under the supervision of Prof. Santabrata Das. His thesis, titled "Magnetohydrodynamic and Hydrodynamic Studies of Relativistic Accretion Flows Around Black Holes," explores the dynamics of black hole accretion using pseudo-Newtonian, post-Newtonian, general relativistic frameworks. He is a recipient of the Prime Minister's Research Fellowship (PMRF) by the Government of India. Samik is currently visiting the Shanghai Astronomical Observatory (SHAO), where he is working alongside Prof. Fu-Guo Xie on radiative processes in accretion physics.

Astronomy and Astrophysics Division
天文与天体物理研究部